
Solutions to Weekend Activity: Sigma Notation and Series

3) Find s1, s2, s3, s4, and s5; Do not simplify your answers.

s1 = 1
s2 = 1 + 1

4

s3 = 1 + 1
4

+ 1
9

s4 = 1 + 1
4

+ 1
9

+ 1
16

s5 = 1 + 1
4

+ 1
9

+ 1
16

+ 1
25

4) Note that sn an increasing sequence (each term is bigger than the previous term). Why

should we expect this to occur? Will this be true of the partial sums sn =
n∑
k=1

ak for ANY

sequence an?

The terms of the sequence of partial sums are increasing because 1
n2 > 0 for all n ∈ N.

Therefore, we are always adding another positive fraction to the preexisting sum. This will
not be true for sn associated to an where an is ever less than or equal to zero.

So although the terms of an = 1
n2 get smaller and smaller, the terms of sn keep getting

get bigger and bigger. It’s clear that lim
n→∞

1

n2
= 0, but what is lim

n→∞
sn?

Unfortunately, it could be just about anything!

5) Explain why the limit of sn is so unpredictable. Keep in mind your knowledge 0 · ∞.

As n increases, the terms of an get smaller and smaller, tending toward zero. However,
the value of sn keeps increasing, since we are adding together more and more terms. The
size of the terms going to zero and the number of terms going to infinity means we have no
idea what will happen: 0 ∗∞ is not well defined, and limits of type 0 ∗∞ are unpredictable.
The answer will depend on the relative strengths of the 0 and ∞ involved. Generally, such
limits must be solved with L’Hospitals. In this case, the question is whether the terms of an
go toward zero fast enough for their sum to be finite.
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6) Using your calculator, approximate
∞∑
n=1

1

n2
by finding s10 as a decimal.

s10 ≈ 1.54977

7) The actual value of this sum is, surprisingly, π2/6. Estimate π2/6 using your calcula-
tor, and compare the results to your approximation. Which is bigger? How would you know
which is bigger without even checking the numbers?

Using the approximation π ≈ 3.1415, you get π2

6
≈ 1.64484

The value of π2

6
should be bigger, since it is obtained from s10 by adding on still more positive

fractions.

We say a series converges if and only if its sequence of partial sums con-

verges. Another way to say this would be
∞∑
n=1

an = lim
k→∞

k∑
n=1

an = lim
k→∞

sk

8) Use the definition of convergence to show that the series
∞∑
k=1

0 converges to zero. Begin

by finding a formula for the sequence of partial sums sn.

sn =
∑n

k=1 0 = 0. Therefore, since lim
n→∞

sn = 0, we conclude that
∞∑
k=1

0 converges to zero

by definition.

9) Use the definition of convergence to show that the series
∞∑
k=1

c diverges for any con-

stant c 6= 0. Begin by finding a formula for the sequence of partial sums sn.

sn =
∑n

k=1 c = c ∗ n. Therefore, lim
n→∞

sn diverges. We conclude that
∑∞

n=1 c diverges.

10) If we know that the series
∞∑
n=1

an converges, what (if anything) can we say about

a) lim
n→∞

sn? The limit must converge

b) lim
n→∞

an? The limit must be zero
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If
∞∑
k=1

ak = A and
∞∑
k=1

bk = B (both converge to constants), what will
∞∑
k=1

(2an + bn) do?

Let An =
n∑
k=1

ak, Bn =
n∑
k=1

bk, and sn =
n∑
k=1

(2ak + bk) be the sequences of partial sums.

The information given in the problem tells us that lim
n→∞

An = A and lim
n→∞

Bn = B.

Note that, by the properties of sums, sn = 2An +Bn for all n.
So, by the properties of limits: lim

n→∞
sn = lim

n→∞
2An +Bn = 2 lim

n→∞
An + lim

n→∞
Bn = 2A+B

11) I have told you that
∞∑
n=1

1

n2
=
π2

6
. Note that 1

n3 ≤ 1
n2 for all n ≥ 1.

Use these facts to argue that
∞∑
n=1

1

n3
converges.

Since 1
k3
≤ 1

k2
, it follows that

n∑
k=1

1

k3
≤

n∑
k=1

1

k2
Since the sequence of partial sums of 1

k3
is

increasing and bounded above by π2/6, it must converge.

12) Now, use the fact that
∫∞
1
x−3dx converges to argue that

∞∑
n=1

1

n3
converges.

Hint: Draw a picture of
∫∞
1
x−3dx being underestimated by rectangles of width 1.

Each rectangle you have drawn has area 1/n3 where n is the right endpoint of each inter-

val [n− 1, n], n ≥ 2. The sequence
n∑
k=1

1/k3 = 1 +
n∑
k=2

1/k3 is increasing and bounded above

by the integral 1 +
∫ n
1

1
x3
dx. Since this improper integral converges by the p-test,

∞∑
n=1

1

n3

converges as well.
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13) Let an = (−1)n+1 1
n3 . Consider

∞∑
n=1

an. Note that s5 = 1− 1
8

+ 1
27
− 1

64
+ 1

125
.

∞∑
n=1

an is called an alternating series since the terms of the sum alternate between being pos-

itive and negative. Does
∞∑
n=1

(−1)n+1 1

n3
converge or diverge?

0 ≤
n∑
k=1

(−1)n+1 1

n3
≤

n∑
k=1

1

n3
, so the sum is bounded and cannot diverge to infinity. The

oscillations of sequence of partial sums grow smaller and smaller as n increases. Therefore,
the sequence of partial sums should tend toward a finite limit. We conclude that the series
converges.

14a) Consider the sequence an = 1, 1
2
, 1
2
, 1
3
, 1
3
, 1
3
, 1
4
, 1
4
, 1
4
, 1
4
, 1
5
, 1
5
, 1
5
, 1
5
, 1
5
, . . .

Show that lim
n→∞

an = 0, but
∞∑
n=1

an diverges. Hint: s10 = 1+(1
2
+ 1

2
)+(1

3
+ 1

3
+ 1

3
)+(1

4
+ 1

4
+ 1

4
+ 1

4
)

lim
n→∞

an = 0, since the fractions involved are getting smaller and smaller.

However, sn diverges: If you group the terms as above in parentheses, you will notice that
the sum inside each set of parentheses is 1. No matter how big sn gets, there will always be
another 1 to add to it if we go far enough. we conclude that the sum has no upper bound,
and must diverge to infinity.

14b) Based on your knowledge of improper integrals and your experience in (12), can you
think of another (simpler) series that might diverge even though the terms go to zero?

∞∑
n=1

1

n
diverges. To prove this fact, OVERestiate 1

x
with rectangles. This will show that

∞∑
n=1

1

n
>

∫ ∞
1

1

x
dx, which diverges to infinity. It follows that

∞∑
n=1

1

n
diverges as well.
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